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Abstract

This study investigates themitigation of gender bias inmachine learningmod-
els for Coronary Heart Disease (CHD) diagnosis. Utilizing data from the Na-
tional Health and Nutrition Survey (NHANES), we develop a neural network
(NN) model employing an adversarial configuration to address disparities in
CHD prediction. The primary NN model for CHD classification is coupled
with a secondary discriminator model designed to penalize gender-based bi-
ases. Our results demonstrate a significant reduction in bias compared to
conventional approaches while maintaining clinically relevant accuracy. Al-
though a marginal decrease in overall predictive performance was observed,
the model efficiency remained comparable to existing methodologies. This
research contributes to the growing body of literature on the ethical use of
artificial intelligence and machine learning in healthcare, offering a novel
approach to mitigating demographic biases in cardiovascular disease diag-
nostics. The findings suggest potential for improving equitable healthcare
outcomes, particularly for underrepresented patient populations in CHD di-
agnosis and treatment.

Website: https://chd-adversarial-nn.github.io
Code: https://github.com/patsals/CHD-adversarial-nn
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1 Introduction

1.1 Intro
Coronary Heart Disease (CHD) is a type of Cardiovascular Disease historically associated
with significant gender disparities in the diagnosis and treatment of patients. In our review
of existing literature, we found studies showing that CHD can be efficiently and effectively
classified using Convolutional Neural Networks (CNNs), but the fairness and bias of these
models have not been adequately explored or addressed. In general, while the intersection
of machine learning and healthcare has shown promising advancements in patient classifi-
cation and diagnosis, the emergence of biases in these models, especially those discriminat-
ing against underrepresented groups based on sex, gender, race, and socioeconomic status,
raises ethical concerns.
In this project, we worked with health statistics data from the National Health and Nutrition
Survey (NHANES) to train and develop a Neural Network (NN) model that can accurately
predict CHD among patients. From there, we worked to detect andmitigate potential biases
in the diagnosis and classification process. Ultimately, our goal was to develop and imple-
ment a fair and unbiased algorithm to classify patients with CHD at a comparable accuracy
to existing models. Our approach leverages neural networks (NNs) as a primary model
to predict CHD. In order to mitigate bias, we employed an adversarial configuration and
utilize a secondary “discriminator” model to detect and penalize any potential bias, focus-
ing particularly on gender-based biases. This methodology encourages the primary model
to focus on relevant diagnostic features while discouraging reliance on sensitive attributes
thereby promoting more equitable healthcare outcomes.

1.2 Literature Review
In preliminary research, we found several insightful papers discussing the gender disparities
between male and female patients in the treatment and diagnosis of not only Coronary
Heart Disease (CHD) but cardiovascular diseases (CVD) at large.
To start, a systematic review conducted by Al Hamid et al. (2024) provides evidence sup-
porting the need for fairness in our development of models to predict CHD. Through a
comprehensive analysis of 19 studies, Al Hamid et al. reveal significant gender disparities
in the diagnosis, prevention, and treatment of cardiovascular diseases CVDs. Their findings
indicate that women were less likely to be diagnosed with CVDs, received fewer diagnostic
tests such as coronary angiography and ECGs, and were prescribed fewer cardiovascular
medicines compared to men. This gender bias in clinical practice could potentially be re-
flected in the NHANES data we are using, highlighting the importance of carefully examin-
ing gender distribution in our dataset. The study’s observations on differences in symptom
presentation and risk factor consideration between genders aligns with our model, which
incorporates gender-specific features to improve accuracy and fairness in predicting CHD
across demographics.
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Schenck-Gustafsson (2009)’s study on risk factors for CVD in women showcases the contrast
of CVD being the most common cause of death in women, while it is often neglected in
women’s health management. Schenck-Gustafsson identifies key risk factors for CVD in
women, including dyslipidemia, hypertension, smoking, stress, diabetes, obesity (especially
abdominal fat distribution), physical inactivity, and poor eating habits. Importantly, the
study points out unique risk factors for women, such as older age at presentation and higher
likelihood of co-morbidities like diabetes and hypertension.
Maserejian et al. (2009)’s study on disparities in physicians’ interpretations of heart disease
symptoms by patient gender offers crucial insights into the challenges of diagnosing CHD in
women. Through a factorial experiment using videotaped CHD symptoms, the researchers
systematically altered patient characteristics and examined physicians’ diagnostic decisions.
The study reveals significant gender-based disparities in clinical decision-making:

1. Physicians were less certain about the underlying cause of symptoms in female pa-
tients, regardless of age.

2. For middle-aged women specifically, physicians showed significantly less certainty in
diagnosing CHD.

3. Mental health conditions were more frequently considered as the most certain diag-
nosis formiddle-agedwomen (31.3%) compared to their male counterparts (15.6%).

4. An interaction effect indicated that high-SES females were most likely to receive a
mental health diagnosis as the most certain.

These findings highlight a concerning trendwheremiddle-aged female patients, particularly
those of high socioeconomic status, are at risk of misdiagnosis. The tendency to attribute
symptoms to mental health conditions in these cases could lead to delayed or missed CHD
diagnoses – our model could potentially mitigate these disparities and improve diagnostic
accuracy across all demographic groups.
Beery (1995)’s study on gender bias in coronary artery disease diagnosis and treatment
highlights a significant disparity in cardiovascular care, noting that women often receive
fewer referrals for diagnostic and therapeutic procedures despite being at high risk for car-
diovascular disorders. This bias is particularly concerning as many current procedures and
therapies were developed primarily for men, potentially limiting their efficacy for women.
The study reveals that women typically undergo angioplasty or bypass grafting at more
advanced ages and in poorer health conditions, receive fewer advanced treatments like im-
plantable cardioverter defibrillators and heart transplants, and experience poorer outcomes
overall. These findings underscore the importance of our project’s focus on incorporating
gender-specific features and mitigating bias in our model.
Narrowing in on the referral system as an avenue for bias to manifest, we found a particu-
larly interesting paper highlighting the referral system utilized by primary care physicians
(PCPs).
In a study on determinants of referral for suspected coronary artery disease, Winkler et al.
(2023) explore PCPs’ referral decisions and the factors influencing these decisions, using a
sample of 26 cases from nine practices in Hesse, Germany. Their findings reveal that re-
ferral decisions are influenced by various factors beyond patient characteristics, including
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practice environment, PCP-related factors, and non-diagnostic patient characteristics. The
study highlights the complexity of the referral process, with PCPs considering factors such
as proximity to specialist practices, relationships with colleagues, and concerns about over-
treatment. Notably, the authors found that most PCPs were unaware of formal guidelines
and relied on informal local consensus, which was largely influenced by specialists. This re-
liance on informal consensus rather than standardized guidelines indicates potential value
of our model in providing more consistent, evidence-based support for referral decisions.
Finally, we reviewed two papers more directly related to our project scope discussing the
potential benefits and pitfalls of using AI/ML techniques in predicting patient diagnoses.
Mihan, Pandey and Van Spall (2024)’s paper on mitigating AI bias in cardiovascular care
demonstrates that AI algorithms, while transformative in cardiovascular healthcare deliv-
ery, can introduce and perpetuate biases when trained on homogeneous data or inequitable
healthcare processes. This bias can manifest at various stages: algorithm development,
testing, implementation, and post-implementation. The consequences of such algorithmic
bias are significant, potentially leading to missed diagnoses, disease misclassification, in-
correct risk prediction, and inappropriate treatment recommendations. Importantly, these
adverse effects disproportionately impact marginalized demographic groups, exacerbating
existing health disparities. Mihan et al. propose strategies to mitigate bias during AI algo-
rithm training, testing, and implementation, emphasizing the need for an AI health equity
framework.
Dutta et al. (2020)’s efficient neural network (NN) for CHD serves as a key reference for
our project, despite some differences in approach. The authors propose a convolutional
neural network (CNN)model to classify highly imbalanced clinical data for CHD prediction.
While our project focuses on traditional NNs rather than CNNs, several aspects of their
methodology are noteworthy:

1. The authors address the challenge of class imbalance, a common issue in medical
datasets, which our project must also consider.

2. They employ a two-step approach, first using LASSO for feature selection, followed
by homogenization of important features through a fully connected layer. We con-
sider this in our data cleaning and processing steps.

3. Their model achieves a balanced accuracy of 79.5%, outperforming traditional ma-
chine learning methods like SVM and random forest. We will consider this in refer-
ence, although we will expect notably lower figures in exchange for improved fair-
ness and reduced bias.

Our project’s adversarial configuration, with a primary NNmodel and a rival ”discriminator”
model, presents a novel approach to ensuring fairness and reducing reliance on sensitive
features – an aspect not addressed in Dutta et al.’s study. We implement this adversarial
setup to enhance our model’s ability to provide unbiased predictions while maintaining
reasonable accuracy across all demographic groups.
Our review of existing literature accumulated ample evidence showcasing the persistent
gender disparities in CHD diagnosis and treatment, and points toward the potential for
AI/ML models to both perpetuate and mitigate these biases. These studies emphasize the
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need for our project’s focus on developing an unbiased model by incorporating gender-
specific features, addressing data imbalances, and implementing an adversarial configu-
ration. Ultimately, our approach aims to contribute to more equitable and accurate CHD
prediction across all demographic groups.

1.3 Data Description
We acquired our data from the National Health and Nutrition Survey (NHANES) conducted
by the Nation Center For Health Statistics (NCHS), a unit of the Centers for Disease Control
and Prevention (CDC).
The NHANES collects data to understand the health of adults and children in the United
States. It is a comprehensive survey that includes data on participant dietary habits, sup-
plements, and blood work. As part of their survey, participants undergo health exams,
laboratory tests, and nutritional interviews. Since 1999, the NCHS has conducted a con-
tinuous survey collecting data from 5,000 participants, including adults and children, in
different communities throughout the United States. The NCHS states that they follow a
“random, scientific process to select the people [they] invite to participate. This process
ensures that this group of people can accurately represent the health and nutritional status
of everyone in our diverse nation.”
To begin the data collection process, the NCHS notifies local governments of each location
about an upcoming survey. The households in the community receive a notice about the
survey from the NCHS director. The NCHS then sends teams of nutrition and health inter-
viewers, nurses, and health technicians to the community. Health and diet interviews are
conducted in participants’ homes, while health exams are conducted in mobile exam cen-
ters. The NCHS uses an advanced computer system to track and store their data throughout
the process.
Each year, six main categories of data are collected: demographics, dietary, examination,
laboratory, questionnaire, and limited access data. For this project, we focus only on de-
mographics, laboratory, and questionnaire data. From these collections, we selected a total
of 35 variables to create our dataset for this project. Demographic variables include age
and gender. Laboratory variables include iron, glucose, protein, uric acid, creatinine, etc.
Lastly, the questionnaire variables include questions about frequency of moderate work and
vigorous work, diabetes, coronary heart disease, blood-related stroke, etc. Reference Ta-
ble 1 on page 6 for the full table of variables and relevant descriptions and units where
applicable.
We used this dataset to train our neural network model for Coronary Heart Disease classi-
fication with an adversarial model based on SGD Classifier to mitigate gender bias in the
neural network.

5



Table 1: Full list of variables

Attribute Description
Gender Male/Female
Age Years
Systolic Systolic: Blood pressure (first reading) mm Hg
Diastolic Diastolic: Blood pressure (first reading) mm Hg
Weight Pounds (lbs)
Body mass index
White blood cells White blood cell count: SI
Basophils Basophils number
Red blood cells Red cell count SI
Hemoglobin Hemoglobin (g/dL)
Platelet count Platelet count (%) SI
Mean volume of platelets Mean platelet volume (fL)
Red blood cell width Red cell distribution width (%)
Aspartate aminotransferase (AST) AST (U/L) AST: SI (U/L)
Alanine aminotransferase (ALT) ALT (U/L) ALT: SI (U/L)
Creatinine Creatinine (umol/L)
Glucose Glucose (mg/dL)
Gamma-glutamyl transferase (GGT) GGT (U/L) GGT: SI (U/L)
Iron Iron (umol/L)
Lactate dehydrogenase (LDH) LDH (U/L)
Phosphorus Phosphorus (mmol/L)
Bilirubin Bilirubin, total (umol/L)
Protein Protein, total (g/L) Total protein (g/L)
Uric acid Uric acid (umol/L)
Triglycerides Triglycerides (mmol/L)
Albumin Albumin (g/L)
Alkaline phosphatase (ALP) Alkaline phosphotase (U/L)
High-density lipoprotein (HDL) HDL-cholesterol (mmol/L)
Cholesterol Total cholesterol (mmol/L)
Glycohemoglobin Glycohemoglobin (%)
Vigorous-work How often did you do tasks requiring vigorous ef-

fort in the last 30 days?
Moderate-work How often requiring moderate effort?
Diabetes Yes/No
Blood related diabetes Were any of your close biological ever told by a

health professional that they had diabetes?
Blood related stroke Yes/No
Coronary heart disease Yes/No
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2 Methods

2.1 Dataset
We compiled our dataset using the publicly available NHANES API. To account for incon-
sistencies in formatting across a multiple-year range of records, we referenced the official
documentation to track renaming of features between years.
We observed significant missingness of around 40% of observations in various features,
and notably almost 85% in history of strokes in blood-related family members. We took
a minimal approach in handling missing values using a combination of dropping certain
features with effectively unusably high amounts of missing values and imputingmean values
for features where fewer observations record nulls.
Our final dataset retains around 37,000 observations.
Additional pre-processing was conducted on the final dataset prior to model development
and training. First, numerical variables were normalized to ensure gradient convergence,
stabilize gradients to avoid exploding or vanishing, and ensure that all features are consid-
ered proportionally on the same scale. Categorical variables such as whether a patient has
Diabetes or CHD were converted to numerical variables using one-hot encoding.
It is important to note that our dataset is highly class-imbalanced such that there are signif-
icantly more CHD negative patients than there are CHD positive patients. This can cause
models to become biased towards the majority class during classification. Additionally,
it can lead to poor generalization because models may not be able to learn meaningful
patterns from the minority class due to the low number of observations. To address this
issue, minority oversampling was used to randomly generate new minority samples, better
balance the dataset, and prevent bias in favor of the majority class.

2.2 Baseline Model
We developed basic implementations of three models to potentially serve as baseline: ran-
dom forest, logistic regression, and a simple neural network. Based on superior results
in test accuracy and fairness metrics as well as ease of use, we proceed with our logistic
regression model.

2.3 Final Model
2.3.1 Main Model

Our primary predictive model is a Feed-Forward Neural Network implemented via Tensor-
Flow, initialized as indicated in the table below.
Our primary model uses Binary Cross-Entropy Loss and Adam Optimizer.
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Input Layer 35 Units
Dense Layer 32 Units, ReLU
Dropout Layer 30% Dropout
Dense Layer 16 Units, ReLU
Output Layer 1 Unit, Sigmoid Activation (Binary Classification)

We tracked Binary Accuracy and Balanced Accuracy as performance metrics.

2.3.2 Adversarial Model

The secondary adversarial or ”discriminator” model in our adversarial configuration at-
tempts to predict the sensitive attribute, in our case gender, from the prediction output of
the main model. If the main model is biased, the adversarial should be able to correctly
predict the sensitive attribute, and the main model will be penalized.
During early epochs of the training process, the main model should have large loss val-
ues, indicating inaccuracy, while the discriminator model should generally have small loss
values, indicating bias in the main model. As the model is trained, the main model’s loss
should decrease as it improves in accuracy and learns to rely less on sensitive features, while
the discriminator model’s loss should increase as a result.
For this project, the main model outputs the probability that a patient has CHD, which is
then used as input for the adversarial model. Since only the predicted label is used as input
this adversarial model specifically aims to reduce Demographic Parity Difference. Other
fairness metrics, such as odds equality, could be targeted using true and predicted labels as
input for the adversarial model as demonstrated by Yang et al. (2023).
Our discriminator model is a Stochastic Gradient Descent (SGD) Classifier, which supports
logistic regression, perceptron, and SVM (determined by parameter adv_model_type). The
model uses SGDClassifier with the appropriate loss function and learns to predict sensitive
attributes (z) from the main model’s predictions.

2.3.3 Training Process

During each Epoch, our model is trained as follows:
1. Neural Network makes a Forward Pass on a batch
2. Neural Network Computes Loss (Binary Entropy Loss)
3. SGD Classifier uses NN prediction probabilities to predict sensitive attribute
4. Compute Binary Entropy Loss of Adversarial Model
5. Compute Combined Loss Function
6. Compute Gradients with Combined Loss
7. Update Weights with new gradients
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2.3.4 Combined Loss Function

A combined loss function was used to compute the new gradients of the main model and
update its weights. Developed by Yang et al. (2023), this combined loss function features
LP and LA, representing the loss of the main model and the loss of the adversarial model
respectively.
α represents a tunable hyper-parameter that determines the relative significance of the
adversarial model in protecting the sensitive feature, z. Higher α values result in the ad-
versarial model having a larger impact. Lastly, LP

LA
represents a correction term to ensure

that the combined loss at the beginning of training is large, to incentivize the main model
to minimize LP while the adversarial model would maximize LA.
At the beginning of training, ideally, LP is large while LA is small. As the training process
progresses, the adversarial model will begin to penalize the main model when it can predict
the sensitive features from the predicted labels from the main model’s output. This will
encourage the main model to rely less on sensitive features and focus on other features.
Over epochs of training, LP would begin to decrease and LA would increase. Eventually, the
LP
LA

correction term would converge to 0 resulting in the combined loss function becoming
LP −αLA.
Per Yang et al. (2023), we compute combined loss as follows:

L = LP +
LP

LA
−αLA

2.3.5 Metrics

We measure our model’s predictive performance using:
• Accuracy
• Balanced Accuracy

Accuracy provides a general indication of the performance of our model. Due to our use of
a highly imbalanced dataset, it should not be relied on alone. Balanced Accuracy serves as a
more robust metric that accounts for true positives, true negatives, false positives, and false
negatives. Given the context of healthcare, we took special care to factor in false negatives
as it is preferable to diagnose patients who do not have CHD as positive than to diagnose
patients who do as negative.

2.3.6 Fairness Metrics

We measure our model’s fairness using:
• Demographic Parity Difference
• Equal Opportunity Difference
• Disparate Impact
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Demographic Parity Difference is a metric that measures the difference in prediction rates
between groups, per Fairlearn Team (2024). This metric encourages models not to make
predictions dependent on whether observations are in a sensitive group. In the context of
our project, our model’s prediction of whether someone has CHD should not depend on
whether someone is male or female. An ideal value for demographic parity difference is 0;
larger values can indicate of bias.
Equal Opportunity Difference is a metric that compares the true positive rates between
groups, per Fairlearn Team (2024). This metric encourages all groups in the dataset to be
equally likely to receive a positive prediction. In the context of our project, male patients
should have an equal true positive rate as female observations. While this metric does not
consider differences in false positives, in the context of CHD, false positives would cause
less harm overall compared to missed true positives. It is better to conduct further testing
on patients who not have CHD than to incorrectly determine that patients who do have
CHD are safe. An ideal value for equal opportunity difference is 0, large absolute values
indicate bias.
Disparate Impact is a metric that measures the ratio between positive predictions between
groups, per IBM Cloud Pak for Data (2024). This metric encourages equal positive predic-
tion rates between the non-sensitive and sensitive groups. In the context of our project, the
rate of positive CHD predictions between male and female patients should be close to equal.
An ideal value for disparate impact is 1. Any number lower or higher than can indicate bias.

2.4 Hyper-parameter Optimization
Several hyper-parameters that can be adjusted in our model:

lambda_tradeoff Weight of penalty from the adversarial model
epochs Maximum number of epochs to train
learning_rate Rate at which the model adjusts for each epoch
patience Terminates training if loss stagnates or increases
adv_model_type Architecture of adversarial/discriminator model

Due to our model’s simultaneous usage of several different machine learning libraries, stan-
dard procedures such as grid search cross-validation were not be utilized. Instead, each
model was trained and evaluated iteratively with different hyper-parameter values to find
a ”most” accurate and fair model or models.

3 Results

3.1 Baseline Model
Our baseline Logistic Regression model performed as follows:
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Accuracy 0.8789
Balanced Accuracy 0.7181

Given the large gap between the two metrics, the model likely struggled to make correct
predictions for the minority class. As a result, the model may overlook CHD positive pa-
tients and be biased towards predicting patients as CHD negative. This was predictable and
expected considering the severity of imbalance in the dataset. The baseline model demon-
strates this disparity without any additional data processing or de-biasing techniques.

Demographic Parity Difference -0.1876
Equal Opportunity Difference -0.2409
Disparate Impact 0.466

Keeping in mind that the ideal score is 0 for Demographic Parity Difference and Equal
Opportunity Difference, and 1 for Disparate Impact, the baseline model fails to provide
equal representation between groups within the sensitive classes. In the context of our
problem, the negative demographic parity and equality of opportunity differences indicate
that male or female patients are receiving positive predictions at a difference in rate of
approximately 20%. The Disparate Impact reiterates the same result, emphasizing that the
minority group is receiving fewer positive predictions compared to the majority population.

3.2 Adversarial Neural Network
3.2.1 Best Balanced Model

In training our adversarial neural network, we found the configuration with the best balance
in performance and fairness with hyper-parameters as follows:

Adversarial Model Architecture Logistic Regression
Learning Rate 0.001
Lambda 0.05
Batch Size 32

With these hyper-parameters, it was able to achieve performance as follows:

Accuracy 0.7715
Balanced Accuracy 0.7722

Comparing these numbers with our baseline model, it is clear that the test accuracy score
decreased significantly from 0.8789 to 0.7715 but the test balanced accuracy increased
from 0.7181 to 0.7715. Both changes are likely associated with the high level of imbalance
in the original dataset and the implementation of balanced sampling in our final adversarial
model.
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(a) Model Accuracy Over Epochs (b) Model Balanced Accuracy Over Epochs

Figure 1: Best Model - Accuracy Metrics over Epoch

Our ”best” model achieved fairness metrics as follows:

Demographic Parity Difference 0.2436
Equal Opportunity Difference 0.0106
Disparate Impact 1.4245

Considering the ideal values for all three fairness metrics, the model obtained a slightly
worse demographic parity, moderately better disparate impact, and significantly better
equal opportunity.
Our loss function is catered towards improving (reducing) equal opportunity difference,
and it was expected that out of all three fairness metrics it would be positively affected
the most. From -0.2409 to 0.0106, our adversarial configuration was able to reduce equal
opportunity difference by 95.6%.
Demographic parity shifting from negative to positive may be due to oversampling the un-
derrepresented CHD data points, diversifying the sensitive attributes of gender.

12



(a) Demographic Parity Difference (b) Disparate Impact

(c) Equal Opportunity Difference

Figure 2: Best Model - Fairness Metrics over Epoch

3.2.2 Most Fair Model

The model that achieved the best results in the three fairness metrics utilized a perceptron
as its adversarial component, had a learning rate of 0.1, lambda trade off of 0.05, and
a batch size of 64. It received a test accuracy of 0.5399 and test balanced accuracy of
0.54, showcasing a significant drop of 0.2 when compared to our baseline model. Both the
accuracy and balanced accuracy over the training process can be seen in Figure 3.
Although accuracy dropped significantly, we saw the opposite trend in our fairness met-
rics. Achieving a demographic parity difference of 0.0563, equal opportunity difference of
0.0035 and a disparate impact of 1.0609, our model achieved near perfect values, visible
in 4. This model demonstrates minimal bias when making decisions in considering patient
gender. While our model showcased its ability to treat all groups of the sensitive attribute
equally, its fairness came at the cost of its ability to make accurate predictions.
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(a) Model Accuracy Over Epochs (b) Model Balanced Accuracy Over Epochs

Figure 3: Most Fair Model - Accuracy Metrics over Epoch

(a) Demographic Parity Difference (b) Disparate Impact

(c) Equal Opportunity Difference

Figure 4: Most Fair Model - Fairness Metrics over Epoch
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4 Discussion
4.0.1 Overall Analysis

Our implementation of an adversarial model was designed to reduce gender bias while
maintaining reasonable performance. In this pursuit, we achieved a reduction of 95.6%
from -0.2409 to 0.0106 in equal opportunity difference. While our overall accuracy de-
creased marginally, our balanced accuracy increased a notable amount, indicating better
performance with a more balanced dataset.
In our evaluation, we were able to successfully combine our neural network predictor with
adversarial de-biaising to protect a sensitive feature in our dataset. While overall accuracy
decreased, we believe the tradeoff is worthwhile in order to improve fairness and minimize
bias. Especially in the context of healthcare, where patients health and wellbeing are at
stake, it is of vital importance to consider fairness.
Importantly, we note that our model should under no context be used to conclusively diag-
nose patients for CHD. It is absolutely not a sufficient substitute for professional diagnosis
and treatment from a licensed physician. We believe the value of our model lies primarily
in our advent of the adversarial neural network configuration, and secondly as an iterative
improvement on existing models used to predict CHD.

4.1 Limitations
Our results showed that reducing gender bias through an adversarial configuration is fea-
sible even when using two different models for the main model and the adversarial com-
ponent. It is important to note that there are limitations that could be addressed in future
research.
Firstly, our model does not support protection of multi-class sensitive features. Only one
sensitive feature can selected for the adversarial model to predict from the output of the
main model. This is not necessarily a problem our dataset where the goal is only to protect
one sensitive feature in gender. However, other datasets may have several sensitive features
such as race, sexuality, or socioeconomic status. A more complex model may be necessary
to address this.
Another limitation is that this framework focuses on improving the score of a single fairness
metric. In our results, changes were observed in both other fairness metrics but those
changes were unexpected andmay not always occur. Future research could work to develop
a model capable of addressing multiple fairness metrics simultaneously.
Lastly, model is not suitable for large data sets that contain observations in the hundreds
of thousands or more. Although this model was successful in addressing gender bias, it is
more suited to small or medium-sized datasets due to long training times.
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4.1.1 Further Research

Further research could improve time and space-efficiency in training of our model, such as
by training the adversarial on every K epoch, leveraging adversarial models that can utilize
GPU hardware acceleration, or optimizing the training process as a whole.
Moreover, our adversarial framework can be applied to much more complex feed-forward
neural network models with more layers. Future researchers can examine the efficacy of
this framework with not just feed-forward neural networks but also other types of neural
networks such as convolutional neural networks. Although this model can only reduce one
specific type of bias, it can still be applied in many other healthcare applications where
classification tasks can provide relevant information.
Additionally, future researchers could consider applying this framework to reduce bias in
non-healthcare areas such as job applicant screening, the criminal justice system, or loan
approval.

5 Conclusion
In this project, we demonstrated that adversarial de-biasing as an in-processing technique
can significantly reduce gender bias for classification tasks such as CHD prediction in US
patients. Our adversarial model was trained on a medium-sized data set, around 30,000
observations, using a neural network for the CHD classification task and an SGD classifier
for the adversarial component. For this project, we quantify bias using fairness metrics of
demographic parity, equality opportunity difference, and disparate impact.
In our results, we were able to reduce the equal opportunity difference metric by 95.6%.
By achieving a score closer to 0, our adversarial neural network model correctly classifies
CHD more fairly and equally across male and female patients than before.
As AI/ML continues to transform healthcare delivery, our research contributes to the de-
velopment of systems that are not only powerful and accurate but also fair and equitable
for all patients. Although our project does not completely resolve gender bias found in
the CHD healthcare space as a whole it does contribute insight and provides confidence
that gender bias can be addressed in AI and machine learning models without massively
sacrificing performance.
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(a) Main Model Loss Over Epochs (b) Adversarial Model Loss Over Epochs

Figure A 2: Loss for Most Fair Model
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DSC 180AB Group A10-2 Proposal: An Adversarial Framework for Mitigating Gender Bias
in Coronary Heart Disease Prediction

Members: Diego Silva, Kai Ni, Patrick Salsbury

Problem Overview & Background

Machine learning is becoming an increasingly popular solution within the healthcare industry to
classify and diagnose patients [1]. Although this has demonstrated to be an effective approach,
machine learning models have been found to contain biases that discriminate underrepresented
groups based on variables such as sex, gender, race, and socioeconomic status [6]. With
certain diagnoses like Cardiovascular Disease (CVD), which has often been perceived as a
“man’s disease” [4], female patients are less likely to receive the proper treatment as they are
often diagnosed with less confidence compared to male counterparts [5]. Coronary Heart
Disease (CHD) is a specific type of CVD in which significant sex and gender disparities continue
to be especially pervasive. Women experience more hypertension, diabetes, longer stays in
intensive care units, and poorer outcomes with CVD, which has been theorized to be linked with
the biases within diagnosis and referral systems [2, 3].

While there may be many determinants which can result in disproportionate rates of referral
between male and female patients for CHD treatment, we would like to eliminate biases
contributed by AI algorithms. Specifically, we would like to detect and mitigate biases in the
development and training processes to build fair and unbiased machine learning algorithms for
classifying and diagnosing patients for CHD. Previous research has explored the efficacy of
using convolutional neural networks (CNN) to predict CHD, finding that CNNs can be used
effectively and efficiently to produce accurate predictions [7]. CNNs are particularly flexible deep
learning algorithms able to automatically learn features from datasets and analyze multiple
media types. However, without appropriate supervision and necessary adjustments, they may
develop significant biases and over-reliance on certain features. We believe that by using two
models in an adversarial configuration, we can mitigate gender bias even in machine learning
prediction of CHD. We will use a primary model to predict whether or not a patient should be
referred for CHD, and we will implement a secondary discriminator model that penalizes the
primary model if its predictions correlate with sensitive features within the dataset. With this
approach, we should be able to encourage the primary model to focus on relevant features
related to the diagnosis and discourage it to rely on sensitive features like gender that can
introduce bias.

Problem Statement & Methodology

The healthcare industry faces a critical challenge in addressing sex and gender disparities in
CHD prediction through machine learning models. Despite the increasing adoption of AI-driven
diagnostic tools, current models may perpetuate and amplify existing biases in medical
decision-making, or introduce new biases during model training and development. In this
project, we will utilize adversarial debiasing, which involves leveraging two rival models – one



primary and one secondary – to reduce dependence on sensitive features or over-reliance on
specific features.

This project will extend on certain aspects of our replication project, in which we examined and
reduced any perceived biases in modeling healthcare utilization rates. Here, we will dive deeper
and focus on CHD specifically, as opposed to the more general scope of our previous project.
Our technical approach will involve the following:

𝐿
𝑇𝑜𝑡𝑎𝑙

 =  𝐿
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

 −  λ𝐿
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟

where represents the primary model's loss function for CHD prediction,𝐿
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐿
𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟

represents the adversarial component's ability to predict gender from the model's internal
representations, and a constant is used to weight the discriminator model. Our ultimate goalλ

will be to develop a machine learning model that maintains clinical relevance while reducing
gender correlation through the adversarial configuration and incorporating fairness metrics into
the training objective.

Justification of Success

Based on the successful development of CNN-based models for predicting CHD [7], we believe
that we will be able to maintain a competent level of performance on the same dataset with our
debiased model, even after our debiasing techniques. We will explore combinations of CNN with
other conventional machine learning models such as logistic regression, gradient boosting, and
random forest for the primary and discriminator models, and evaluate performance in efficiency,
accuracy, and bias. We will also experiment with using the same type of model for both the
primary and discriminator models and compare results. We will determine which configuration
yields the best outcomes, and proceed by further optimizing any relevant hyperparameters. By
testing multiple combinations, we should finally be able to produce an efficient, accurate, and
fair model.

Dataset: “NHANES data from 1999–2000 to 2015–2016. The dataset is compiled by combining
the demographic, examination, laboratory and questionnaire data of 37,079 (CHD – 1300,
Non-CHD – 35,779) individuals” [7].

Primary Output Statement

We will choose a website for our primary output format on top of our standard report. Our report
will have a detailed description of our model architecture, training process, and key results and
findings. Our website will include documentation that will allow anyone to reproduce our results
with instructions on how to set up an environment and install necessary imports, along with our
results and analysis. Based on the results of our project, we will also work to design feasible and
relevant interactive modules to include in our website.



A.4 Contributions
Individual contributions attributed to members based on who has taken lead or contributed
most significantly on relevant component(s); components developed or composed through col-
laborative effort listed under Section A.4.1.

A.4.1 Team Members Collectively

• Project proposal
• Baseline and final models
• Formal project report
• Project website

A.4.2 Diego Silva
• Develop and test baseline models

– Random Forest
– Logistic Regression
– Simple Neural Network

• Develop and test final model with adversarial module

A.4.3 Patrick Salsbury
• Compile dataset over multiple year range using NHANES API
• Write automated scripts

– Dataset download
– Dataset cleaning
– Final model testing

A.4.4 Kai Ni
• Write and edit proposal and report

– Abstract
– Introduction
– Methodology

• Develop project website

A5



References
Al Hamid, Abdullah, Rachel Beckett, Megan Wilson, Zahra Jalal, Ejaz Cheema, Dhiya

Al-Jumeily OBE, Thomas Coombs, Komang Ralebitso-Senior, and Sulaf Assi. 2024.
“Gender bias in diagnosis, prevention, and treatment of cardiovascular diseases: A sys-
tematic review.” Cureus. [Link]

Beery, Theresa A. 1995. “Gender bias in the diagnosis and treatment of coronary artery
disease.” Heart amp; Lung 24(6), p. 427–435. [Link]

Dutta, Aniruddha, Tamal Batabyal, Meheli Basu, and Scott T. Acton. 2020. “An efficient
convolutional neural network for coronary heart disease prediction.” Expert Systems with
Applications 159. [Link]

Fairlearn Team. 2024. “Common Fairness Metrics.” [Link]
IBM Cloud Pak for Data. 2024. “Disparate Impact.” [Link]
Maserejian, Nancy N., Carol L. Link, Karen L. Lutfey, Lisa D. Marceau, and John B.

McKinlay. 2009. “Disparities in Physicians’ Interpretations of Heart Disease Symptoms
by Patient Gender: Results of a Video Vignette Factorial Experiment.” Journal of Women’s
Health 18(10), p. 1661–1667. [Link]

Mihan, Ariana, Ambarish Pandey, and Harriette GC Van Spall. 2024. “Mitigating the
risk of artificial intelligence bias in Cardiovascular Care.” The Lancet Digital Health 6(10).
[Link]

Nation Center For Health Statistics (NCHS)., “About the National Health and Nutrition
Examination Survey (NHANES).” https://www.cdc.gov/nchs/nhanes/about/

Schenck-Gustafsson, Karin. 2009. “Risk factors for cardiovascular disease in women.”Ma-
turitas 63(3), p. 186–190. [Link]

Winkler, Katja, Navina Gerlach, Norbert Donner-Banzhoff, Anika Berberich, Jutta
Jung-Henrich, and Kathrin Schlößler. 2023. “Determinants of referral for suspected
coronary artery disease: A qualitative study based on decision thresholds.” BMC Primary
Care 24(1). [Link]

Yang, Jenny, Andrew A. S. Soltan, David W. Eyre, Yang Yang, and David A. Clifton.
2023. “An adversarial training framework for mitigating algorithmic biases in clinical
machine learning.” NPJ Digital Medicine 6(1), p. 55. [Link]

A6

http://dx.doi.org/10.7759/cureus.54264
http://dx.doi.org/10.1016/s0147-9563(95)80020-4
http://dx.doi.org/10.1016/j.eswa.2020.113408
https://fairlearn.org/main/user_guide/assessment/common_fairness_metrics.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/model/wos-disparate-impact.html
http://dx.doi.org/10.1089/jwh.2008.1007
http://dx.doi.org/10.1016/s2589-7500(24)00155-9
https://www.cdc.gov/nchs/nhanes/about/
http://dx.doi.org/10.1016/j.maturitas.2009.02.014
http://dx.doi.org/10.1186/s12875-023-02064-y
http://dx.doi.org/10.1038/s41746-023-00805-y

	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Conclusion
	Appendices
	A.1 Training Details
	A.2 Additional Figures
	A.3 Project Proposal
	A.4 Contributions

	References

